مشخصات کلی، برنامه و سرفصل دروس

دوره کارشناسی ارشد مهندسی خوردهگی و حفاظت مواد

گروه فنی و مهندسی

مصوب سیصد بیست و چهارمین جلسه شورای عالی برنامه ریزی

مورخ 1375/6/18
رای صادره سیصد و هیست و چهارمین جلسه شورای عالی برنامه ریزی مورخ 1375/6/18

(1) برنامه آموزشی دوره کارشناسی ارشد مهندسی خورگنگی و حفاظت مواد که از طرف گروه فنی و مهندسی پیشنهاد شده بود با اکثریت آرا به تصویب رسید.

(2) این برنامه از تاریخ تصویب قابل اجرای است.

رای صادره سیصد و هیست و چهارمین جلسه شورای عالی برنامه ریزی مورخ 1375/6/18 در مورد برنامه آموزشی دوره کارشناسی ارشد مهندسی خورگنگی و حفاظت مواد صحیح است ببرورد اجراگذاری شود.

دکتر سید محمدرضا شاه حسینی
وزیرفرهنگ و آموزش عالی

موردنیا ماست.

دکتر علیرضا رضایی
رئیس گروه فنی و مهندسی

رونوشت: به معاونت مهندس آموزشی وزارت فرهنگ و آموزش عالی جهت اجرای ابلاغ می‌شود.

سید محمد کاظم نامی
دبیر شورای عالی برنامه ریزی
برنامه آموزشی دوره کارشناسی ارشد مهندسی خورشگی و حفاظت مواد

گروه: فنی و مهندسی
رشته: مهندسی خورشگی و حفاظت مواد
دورة: کارشناسی ارشد

شروط عالی برنا‌مه ریزی درسی‌های بیست و چهارمین جلسه مورخ 1375/6/18 براساس طرح دوره کارشناسی ارشد مهندسی خورشگی و حفاظت مواد که توسط گروه فنی و مهندسی نهاده و به نام رییسی‌سازده است، برنامه آموزشی این دوره را در صورت فصل (مشخصات کلی، برنامه و مسیرفل) به شرح پیوست تصویب کرده و مقرر می‌دارد:

ماده ۱ برنامه آموزشی دوره کارشناسی ارشد مهندسی خورشگی و حفاظت مواد از تاریخ تصویب برای کلیه دانشگاه‌ها و مؤسسات آموزش عالی کشور که مشخصات زیر را ارائه می‌دهد:

امتحانات، مؤسسات آموزش عالی دیگر که مطابق فصول در صورت تصویب توسط رییسی‌سازده، تاکید می‌کنند.

الف: دانشگاه‌ها و مؤسسات آموزش عالی که زیرنظر وزارت فرهنگ و آموزش عالی اداره می‌شوند.

ب: مؤسساتی که با اجازه رسمی وزارت فرهنگ و آموزش عالی و برنامه‌ریزی وزارت ارشاد و برنامه‌ریزی رییسی‌سازده، تأکید می‌کنند.

ج: مؤسسات آموزش عالی دیگر که مطابق فصول در صورت تصویب توسط رییسی‌سازده، تاکید می‌کنند.

ماده ۲ از تاریخ 1375/6/18 کلیه دوره‌های آموزشی و برنامه‌های مشابه مؤسسات آموزشی در زمینه کارشناسی ارشد مهندسی خورشگی و حفاظت مواد درهمه دانشگاه‌ها و مؤسسات آموزش عالی به شرط مطابقت مقررات مربوط تاکید می‌کنند که برنامه جدید را ارائه دهند.

ماده ۳ مشخصات کلی و برنامه‌های درسی و سری‌فصل درسی دوره کارشناسی ارشد مهندسی خورشگی و حفاظت مواد در سه فصل جهت اجرای وزارت فرهنگ و آموزش عالی ابلاغ می‌شود.
دوره کارشناسی ارشد مهندسی خورشید و حفاظت مواد

(مهندسی مواد)

۱- تعریف و هدف:

خریدگی می‌باشد از تجربی مواد در اثر انداز و اکتشافات مختلف
به‌منظور ارائه‌می‌باشد. مجموعه‌هایی شامل دو روش، عمده
بی‌پروازی یا تحقیقاتی در این زمینه خریدگی مربوط، مسئولیت
افراد متخصص چه درک سوالات و مشکلات مربوط وارده راه حل‌های
بی‌مهندسی مناسب برای درجه‌بندی و ترتیب افزایش است. هدف از ایجاد ایمنی دوره
ترمیم افزایش تر در بازی است که بتوانند بر اساس متن کلاسیک موجود دو اخیر
دستورالعمل علمی و عملی نیازهای تحقیقاتی آموزشی، صنعتی و
برنامه‌ریزی‌های مربوط به درمی‌بندی خریدگی و حفاظت مواد را ارائه دهند.

۲- طول دوره و شکل نظام:

طول مدت لازم برای اتمام این دوره بطور متوسط ۲ سال است.
حداقل این مدت و حداقل مدت مجاز برای اتمام این دوره مطبوعی
آمده‌است. دوره کارشناسی ارشد می‌باشد، نظام آموزشی آن واحده است
۱۲ هفته و سه تدریس یک واحد نظری ۱۷ ساعت و عملی ۳۳ ساعت می‌باشد.

۳- نقص و دواوی:

فارغ التحصیلان این دوره می‌توانند مشاغل زیر را انجام دهند.
درصد تولید ناخالص ملی است، ضمناً علاوه بر خریدات اتحادی، خریدات جانی و آلودگی‌های محیطی نیز در این صنعتی‌های خودگرای حاصل می‌شود.

در اولین نیزه‌هنگ سایر گروه‌های صنعتی مسائل خودگرای و حفاظت‌سازی قطعات درکننده صنایع وجود دارده، از آن جمله می‌توانی موارد زیر را نام برد:

- خوردنی و حفاظت دیگر بخش‌های بازار تاسیسات حرفه‌ای توریستی، سپر و...
- خوردنی و حفاظت مواد شیمیایی و سوختها
- خوردنی و حفاظت لوله‌های زیرزمینی در منابع آب، گاز، نفت و کابل‌های زیرزمینی

- خوردنی و حفاظت ناسیسات دریابی (کانتین مازی، حفاری، اسکله و...)}

- خوردنی و حفاظت در منابع سد
- خوردنی و حفاظت در منابع آب شیرین

در ضمن در رابطه با تغییرات منشأ، نسبت به انتخاب بهترین مواد کاهش دهنده خوردنی، مواد باکتری‌کننده، مواد آگاری و بوی‌بردار

- کیفیت آنالیسیا محصولات، درمانی، ماهیت، رتبه مشکلات حاصل از
- خوردنی با وجود داشتن خارجی استفاده مورد پایین ماده به بوته

- فراورده هرکدام که از این راه خوار محال می‌گردد و به صورت کش‌چم وارد بوده. برای این که موارد فوق و نیاز وابستگی و رسیدن به
- خوردنی‌طلبی علیه، وضعیت این مجموعه به خوبی آشکار

است.
کارتبتات دوره باسابوردروه های تحقیقاتی

از آنجایی که ساخت قطعات و طراحی محیط دستگاه‌های داشتن
شناخت کافی از مفاهیم مواد در سیستم‌های ویژه حفاظت آنها
امکان پذیرنیست، لذا می‌توان این دوره را این های تحقیقاتی
می‌دانست و علم مواد غیرفلزی، شناخت و انتخاب مواد فلزی،
می‌دانست و علم مواد مکانیک و می‌دانست شیمی در ارتباط به

الف: شرایط عمومی:
جنسبندی، موانع و مانور
ب: شرایط اختصاصی

شرایط اختصاصی گزینش دانشجویان این رشته از ابتدا فاصله
دوره های تخصصی کلیه شاخه‌های مهندسی مواد مالزی، مهندسی
شیمی، مهندسی کاربردی، مهندسی زیستی، مهندسی کشاورزی و مهندسی
کشاورزی انجام می‌گردد.

۸- گزینش: امتحان گزینش علاوه بر شرایط عمومی و اختصاصی ورود به

دانشگاه از مواد زیر می‌باشد:

۱- دژبان خارجی باشیری ۲-
۲- خورشید و اکسیداسیون در سطح خورشید و اکسیداسیون مجموعه های
مواد با صرفبندی ۴-
۳- ترمودینامیک در سطح کتاب Gaskell با صرفبندی ۴-
شیمی فیزیک و الکتروشیمی برنامه‌ی سیلات دروس شیمی فیزیک
مجموعه فلزات غیرآهنی با صربی
5- متالورژی فیزیکی در سطح دروس متالورژی فیزیکی مجموعه‌های مواد با صربی
4- فیزیک مکانیکی در سطح دروس فیزیک مکانیکی مجموعه‌های مواد با صربی
7- ریاضیات مهندسی با صربی
9- برنامه‌ی درسی

۱۱- عنوان دروس:

1.1.1 دروس کمکی: دانشجویانی به دوره الگوناس ارگد
پژوهشی مهندسی خورگدن و حفاظت مواد وارد می‌شوند.
<table>
<thead>
<tr>
<th>کد درس</th>
<th>تعداد واحد</th>
<th>تکمیلی</th>
<th>عامل</th>
<th>نحوه پیشنهاد زبانی/آموزشی</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>51</td>
<td>بیست و یکم</td>
<td>A</td>
<td>تکمیلی و بیست و سوم</td>
</tr>
<tr>
<td>B</td>
<td>51</td>
<td>بیست و یکم</td>
<td>B</td>
<td>تکمیلی و بیست و سوم</td>
</tr>
<tr>
<td>C</td>
<td>32</td>
<td>بیست و یکم</td>
<td>C</td>
<td>تکمیلی و بیست و سوم</td>
</tr>
<tr>
<td>D</td>
<td>31</td>
<td>بیست و یکم</td>
<td>D</td>
<td>تکمیلی و بیست و سوم</td>
</tr>
<tr>
<td>E</td>
<td>36</td>
<td>بیست و یکم</td>
<td>E</td>
<td>تکمیلی و بیست و سوم</td>
</tr>
<tr>
<td>F</td>
<td>34</td>
<td>بیست و یکم</td>
<td>F</td>
<td>تکمیلی و بیست و سوم</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>منالوری و مواد</th>
<th>ساختار کیمیایی</th>
<th>شیمی کاربردی</th>
<th>مرحله‌بندی ساختاری</th>
<th>کیفیت‌بندی</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td>E, F</td>
<td>E, F</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| جمع 8 واحد | 24 واحد | 12 واحد | 42 واحد |
زمینه‌های تحقیقاتی در این رشته متشکل بوده و از جمله موارد زیر در می‌آیند:

الف: تحقیق در زمینه اصلاح و بهبود خواص آلیاژ‌های مورد استفاده در صنعت ازنظر خوردرگی

ب: تحقیق در زمینه حفاظت فلزات و آلیاژ‌های محیط‌محیت‌های مورد استفاده (ممانعت گنده‌ها)

- تحقیق در اثرات کاتدی و آندی خمودا" در مورد لوله‌های زیرزمینی و تاسیسات دریایی
- تحقیق در زمینه کاربرد پوشش‌های مختلف غیرفلزی در مصالح
- تحقیقات بنیادی در گسترش علم خوردرگی فلزات.
مشخصات مدیریتی هر یک:

* دکتری خورشیدپور با کلیه‌سنجی‌های بحث‌های متفاوت و نتایج تحقیقاتی و نمایشگاه‌های مختلفی در کشور و بین‌المللی.
* مسئولیت بیشتری، تجربه کاری، و سایر اهداف مربوط به رشد و ترقی وی در حوزه تحقیقات و توانمندی‌ها و کاربردن آن در پژوهش‌ها و نتایج آن.
* توانمندی در جنبه‌های مختلفی از جمله میانگین‌کاری خورشیدپور.
* روش‌های نوین مطالعه مواد و آزمایشگاه‌های مختلف
* آزمایشگاه‌های اصول حفاظت
* حفاظت کاندیداتوری آنلاین
* آزمایشگاه بررسی و بررسی مواد با مشارکت کلیه‌سنجی‌های دانشگاه
* حفاظت از روش‌های نمایشگاه‌ی‌های تبلیغاتی و آلی
* طراحی و نوشتن برنامه‌هایی

به‌حاشیه، نتایج سایر بخش‌های کاردرمیکت

سربطه
دکتری میکروژنیک، مواد با حداقل ۳ سال سابقه تدریس در ترمودینامیک جامعات

دکتری خریدگی با حداقل ۴ سال سابقه تدریس

دکتری مهندسی شیمی، خریدگی مواد و شیمی با ۴ سال سابقه کار صنعتی فوق لیسانس رشته داری فوق با ۴ سال سابقه کار صنعتی

دکتری مکانیک با مواد با ۳ سال سابقه عملی در زمینه مربوط به

دکتری مهندسی سیالیکاپتیک جامد با سابقه تدریس در زمینه مربوط به

دکتری مواد شیمی با حداقل ۴ سال سابقه تدریس در سیستمیک مواد

ترمودینامیک پیشرفته مواد

خویدگی در محیط‌های طبیعی

خویدگی در محیط‌های منعکس

خطا در انداره‌گیری

مهندسی سیال‌ها

سیستم پیشرفته

۱۲. تجهیزات مورد نیاز:
تجهیزات مورد نیاز:

- اکترودهای مرجع PH
- متر پناسمودانت
- نره نجخ خوردگی
- میکروسکوب مطالعه
- هولی باج
- وسایل آزمایش نمک‌پاشی
- بولیس Permascope
- Humidity chamber
- استاندارد Hullcell
- وسایل آزمایش خشک روکش
- ساخت آزمایش دربرابر خشک
- وسایل میکرو میکروکوب
- میکروسکوب(electrolyte)
- میکروسکوب کم‌پیکل
- نرم‌افزار
- TEM
- ساخت اس
- ساخت
- میکروسکوب کم‌پیکل
- وسایل آزمایش کاری
- وسایل آزمایش کاری
- استاندارد ایندیکی
- روش استحکام
- ساخت
c.F
- کوره‌های مصنوعی
- واکسن
- کنترل کار
- نجخ
- ترازو
- موارد
- شیمیایی
- شبیه‌ساز
- آزمایشگاه
- ترمومتر
- ترمومتر
- بیماری
- تنظیم
- کانسر
- درجه حرارت
- سیل‌درهای
- انواع
- گازهای
- شیمیایی
- مربوطه
لیست دروس کارشناسی ارشد خوردگی و حفاظت مواد

دروس اجباری:
1- خوردگی بیشترته
1- آزمایشگاه خوردگی بیشترته
3- حفاظت کاندید و انگیز
4- الکتروشیمی بیشترته
5- سیستم بیشترته
6- کامپیوتر و خوردگی داغ
7- روش‌های نوین مطالعه مواد و آز
8- آزمایش اصول حفاظت
9- جنبه‌های مکانیک خوردگی
10- ترمودنامیک بیشترته
11- محاسبات
12- پژوهش

cجمع 27 واحدها

دروس اختیاری: 9 واحدها
1- انتقال و پوشش‌های تبدیل
2- سیستم گردش حاوی خوردگی
3- آزمایش‌های بررسی عمل تخریب مواد (عملی)
4- خطا در اندازه‌گیری
5- خوردگی در واحد‌های صنعتی
6- خوردگی در سیستم‌های طبیعی
7- مسئله مطالعه
8- پیدا کردن های اندازه‌گیری
9- تدوین از سایر دوره‌های کارشناسی ارشد

با نظر استاد راهنما

واحد 14-18
الکتروشیمی و سینتیک جبرانی

تعدادواحد: ۲
نوع واحد: نظری
پیشنهاد: ندارد
سرفصل دروس:
بخش اول الکتروشیمی

۱. خواص ترمودینامیکی بونهای محلول: آنتالپی، آنتروپی و انرژی آزاد
تغییر بونهای محلول، فعالیت، ضریب فعالیت و ضریب فعالیت
متوسط، صماده دبی، دیوگول

۲. بیل‌های شیمیایی: بیل‌های گالوانیک، بیل‌های الکتروولیتی
واکنش‌های اکسایشن و واکنش کلی بیل، انواع نیمه بیل، هسته‌ها
اتمال ماژیک بیل‌های گانسی، بیل‌های خلوت، بیل‌های گول‌بندی و
پتانسیل استاندارد، تغییرات پتانسیل بیل با غلظت، رابطه بین اختلاف
پتانسیل و مقادیر ترمودینامیکی واکنش کلی بیل

۳. گزارش اختلاف پتانسیل بیل‌های برشت نیترادیسیون‌ها و مسایل شیمیایی: مسایل
ضریب اکتیویته متوسط بونهای فیزیولوژی،
بخش دوم: سینتیک

۴. مواد مایه‌گذار جابجایی ترمودینامیک و سینتیک در فرآیندهای شیمیایی
اهداف مطالعه و پیشنهادهای سینتیک فرآیندهای شیمیایی، سرعت
واکنش و سرعت در دو روش موثر در سرعت واکنش، روش‌های فیزیکی
ویژه‌ای برای تعيين معادله سرعت، واکنش‌ها ي بنيادي و مربوطه.

2. واکنش‌هاي مرتبط اول و دوم و سوم، زمان نيماه عمرو استفاده از آن برای تعیین معادله سرعت، واکنش‌هاي دواتريه، موازي و رقابتي، واکنش‌هاي پيچیده (چند مرحله‌اي) و مگانيزم واکنش.

3. منجر به بررسی واکنش و معادله آرینوس، تعیین مراحل برخورداری باعث گذار، باقيماندن تغريبيات سينتيک و واکنش‌ها، اثرکاني‌های سرعت واکنش، واکنش‌های هموژن و یونیزون.

4. سينتيک انتقال، مفهوم ديفوزيي، قانون اول و دوم فيک، حلال معادلات فيک، تغييرات ضريب ديفوزي با غلظت و دما، ديفوزيي در آلياها.
خوردرگی و آکیداسیون (جبانی)

سند گاه: ۳

نوع واحده: نظری

پیش‌نیاز: الکتروشیمی

هم‌نیاز: ندارد

خوردرگی فلزات: تعریف خوردرگی، همیت خوردرگی، خوردرگی الکتروشیمی. شامل: اصول، تعریف و مکانیزم، و اکتشافات مهم آن در کاتدی، انواع سل‌های (کالوانیک و خوردرگی الکتروشیمی)، تعدیل شدن واهمیت آن، سرعت خوردرگی، عوامل مؤثر در خوردرگی، انواع خوردرگی، اکیداسیون: مقدمه، ترمودینامیک اکیداسیون، کینئیک اکیداسیون، هدایت الکتریکی اکسیدها، اکیداسیون فلزات و آلیاژها، آلیاژهای مقاوم در برابر اکسیداسیون، بوش‌ها برای محافظت در مقابل اکسیداسیون، خواص مکانیکی و شکل فیزیای اکسیدان اکسیداسیون بر روی خواص مکانیکی فلزات و آلیاژها. حفاظت کاندی، ممانعت کننده‌ها و حفاظت آندی، بوش‌ها و آزمایشات مربوطه روش‌های مطالعه خوردرگی، خوردرگی در محیط‌های منتهی، خوردرگی توسط مذاب و سری‌بر و نمکها.
خواص فیزیکی مواد، آزمایش‌های مالتیوکراتی (چربانی)

تعداد واژگان:

۴

نوع واژگان: نظری، عملی

پیش‌نیاز:

نادر

همسان:

نادر

سرفصل دوره:

ساختار اتمی، بلوری، ژل‌های فلزات و انواع اتحالات، صفحات و جهات.

بلور‌دهی‌بندی: سایه‌برداری، انتقال، شکل‌گیری و نمونه‌برداری.

گرم‌و‌چربی و شکل‌گیری آن، تیتان‌بندی، مواد سلولار، ژل‌سازی و شیمیایی آن.

گرگ‌های پیش‌گیرانه، و تغییرات جایگزینی.

سیستم تغییر و انحلال کامل.

دشواری درهم‌پوشانی و روند تغییر جملات و پاتلی.

انحلال

نوع‌های جامد، ماده‌ای مربوط به منحنی‌های

نرم‌تر

می‌شود.

پیش‌برنگ، پیش‌برنگ，
خواص مکانیکی (چیزات)

تعداد واحد: ۲

نوع واحد: نظری

پیشنهاد: خواص فیزیکی مواد

بیشتر: ندارد

سرفصل دروس:

نقایق شبکه - تغییر قراری بوسیله لنزه - لنزه در شبکه کامل و محاسبه
تنش پرتوی لنزه بوسیله حرکت نابخالی‌ها - موافقت تنش بحرانی - تغییر
شکل تک کریستال - تغییر شکل در کریستال‌ها - تغییر شکل توسط درکم،
\text{F.C.C.}\) - کارکردی نابخالی‌ها - برادری گر - پدیداری‌ها در سیستم‌های
\text{C.C.H.C.P.}\) - حوزه‌های تنش نابخالی - برجورد نابخالی‌ها، متاب سلول‌ها و
\text{A.A.A.A.}\) - آزمایش کوش سختی و دیگر

آزمایشگاه: آزمایش‌های کوش و بررسی عوامل مختلف برحبوس کوش
ارقیب اندوزه داده، درجه حرارت با سرعت ازنداش طولانی، سطح مقطع
واشکالیت حواری - آزمایش فشار - آزمایش سختی - آزمایش
پرسخ‌های - تغییر شکل بلاستیکی
نام: سطح و پوشش- (چسبانی)

مقدار:

نوع واحد: نظری

بیشینه: ندارد

حداقل: ندارد

سرقامت‌رسی:

اهداف حفاظت (فعالیت‌های پوششی و کنترلی فیزیکی و شیمیایی)

آماده‌سازی سطح و پوشش‌های آماده‌سازی سطح، انواع تمیزکننده‌ها، نشست‌های الکتریکی، مواد روشنایی، کنترل‌ها و آنتن‌های مختلف (الکتروپلیتنیک)

پوشش‌های قابل قبول و روی‌اندود (خواص و کاربرد آن)، پوشش‌های دیفزیون‌یابی

پوشش‌های گیرنده‌ای (رنگ‌ها، لاک‌ها، پلاستیک‌ها، لاک‌ها) لامپ‌های زنجیره‌ای قریب‌ترین درکننده، رنگ‌های هاوا‌زیره

آزمایش‌گاه خوردنی و پوشش دادن؛ آشنا شدن با اصول خوردگی (سری‌های کالوژنیک و پالپاتوری، الکترود مرجع و بی‌دیده، پلازموسی‌یون، اندازه‌گیری سرسخت‌خوردگی، بازیابی اثر جودت‌های گیاهی)، پوشش‌اندازی - زنگول‌هایی، پوس‌‌پوشش‌های مختلف - آزمایشات پروری رنگ

پوشش‌های مسکن‌های نیکل‌خاتم یک‌رووی رنگ و پوشش‌های چسبانی - الکتروپلیتنیک نیکل و کروم.
الکتروشیمی بیشرفته

تعدادواحد: ۲
نوعواحد: نظری
پیشیاز: الکتروشیمی چربانی یا بسیار آل...।
۱- الکتروولیت: نرخک بیشتر هدایت و هدایت مخفوع الکتروولیت ها (Kcl)
- هدایت مولولوکن گولتراشی (Kclraush)
- هدایت بیماری (Transport NO)
- هدایت مخفوع - مصرفه دیب هوکل جیت اندوزه گیری و گازهای آن
- اندوزه گیری هدایت مصرفه بیماری و مصرفه ای حلال - اثر متقابل
پنون - بیون - اثر الکتروفورزی - محلول های ایده آل و غیرایده آل قدرت بی
۲- الکتروولیت: قفل مشترک الکتروولیت- جذب سطحی - خال چندکانه
(Helmoltz, Gouy-Chap
man)
- تغییرات پتانسیل و غلظت در باله دوگانه - Stern, Bockris
مقاومت و خاک الکتروولیت مدار مشابه - نقطه نازک
کنش سطحی و (PZC, Point of set Charge)
کنش الکتروشیمی و بادامس
Electrocapillary
الکتروولیت. سرعت انتقال بالا الکتریکی
۲- واکنش ها: جریان تبادلی - واکنش های آنیدیک و کاتد و... ک
پولاریزاسیون الکتروولیت قابل پولاریزه ندن الکتروولیت غیرقابل پولاریزه
شن - پلاریزاسیون الکتروولیت قابل پولاریزه، واکنش و روابط نافع برای آن
با این دیگر بیونی نرست و جریان جدید، رابطه کلی با پنتولول-برای
پتانسیل تهدید جریان - اثر بیون و کمیت کننده هابرشت جریان واکنش ها
References
2- principles and application of electrochemistry, by D.R. Krow.
3- Industrial Electrochemistry.
خوردگی پیشرفته

تعدادواحد: 2
نوعواحد: نظری
پیشنهاد: الکتروشیمیایی پیشرفته
سرفصل دروس:

1- تکنولوژی واریزیوی خوردگی: تعاریف و هزینه خوردگی - طبیعت الکتروشیمیایی خوردگی و واکنش‌های آن

2- ترمودهانیک خوردگی: رابطه انرژی آزاد گیبس - دیاگرام‌های بوره - روش رس دیاگرام برای آهن - آلیاژ‌های کروم وسی و نیکل - روش‌های اندامه‌گیری پتانسیل الکترودانواع الکترودهای مرجع

3- قانون سینثیک خوردگی: روابط نافل - قانون Stern & Geary

دیاگرام‌های برای حالات مختلف آب خالق - دمپاژورت موادگذاری و در حالات خوردگی موسمی - پتانسیل مخلوط رسانای مطالعه سینثیک خوردگی (پلاریزاسیون - امپدانس برای مطالعه سرعت روش Scanning Rotating Electrode

نوسیز طرزکار پیتاپسیستم مناسبی و مکانیزم های آن در محیط‌های داخلی و خارجی و در محیط‌های اسیدی و اکسید کننده - مکانیزم‌های جهت حرارت‌های مختلف - انتقال گرم و اثرات آن بر سرعت واکنش‌ها - روش‌های عملکرد مانعت کننده همایش و آلی و فازی‌بیار - مکانیزم انتقال خوردگی - روش‌های اندازه‌گیری مقدار خوردگی
(Planned Interval Test)

1- پروپ‌های مقاومتی، روش‌های نمونه‌سازی، پروپ‌های نشان دهنده خوردگی، روش‌های اندازه‌گیری خوردگی از طریق الکتروشیمیایی (پتانلسایزیون مقاومتی، تخلیه و اندامگیری اسیدانی)، روش‌های نوین مطالعه خوردگی.

4- محیط خوردگی بیولوژیکی، انواع مکانیزم‌های هوازه‌ای جلوگیری از آن.

5- مکانیزم انواع خوردگی، خوردگی حفره‌ای، خوردگی شکافی، جدابیش، انتخابی، خوردگی در بتن، خوردگی کامپوزیت‌ها، اعمالات الکتروشیمیایی.

1- Principles and Prevention of Corrosion, by D.A.Jones

2- Corrosion Mechanisms, by F. Mansfeld . Marcel Dekker Inc.
1987.

3- Basic Corrosion Oxidation , by J.M.West, Ellis Horwood Ltd
1986.

4- Advances in Corrosion Science and Technology.
- Von Fraunhofer and J.Anthony; Concise Corrosion Science.

21
آزمایش‌های خوردرگی پیشرفته

تعدادی واحد:
- هم‌زمان: خوردرگی پیشرفته
- مروری بر انشعاب پیشی (جلوه)
- اندازه‌گیری سرعت خوردرگی بهروش‌های مختلف (غوطه‌وری، رویت جدایی گذار)
- پلاریازنون خطی (3 جلسه)
- مطالعه کنیتک اکسیداسیون و مکانیسم خوردرگی داغ با کمک روش‌های میکروسکوپیک (1 جلسه)
- مطالعه خوردرگی موضعی (عکاسی، حفره دارشدن، جابه‌جایی رویه)
- روش‌های الکترونیشیعی (2 جلسه)
- بررسی خوردرگی‌های توان‌پایتی (C.F, S.C.C)
- مطالعه سطح شکست با میکروسکوپ الکترونیک (1 جلسه)
- تعمیر stabilیت به خوردرگی مرزاده‌ای (1 جلسه)
- تست لوب کوینبهای خوردرگی (1 جلسه)
- خوردرگی در غرفه‌های دینامیکی و روی دیسک دوار (1 جلسه)
- استفاده از A.C. امیدادن برای اندازه‌گیری سرعت خوردرگی و مطالعه مکانیزم آن (1 جلسه)
- خوردرگی بیولوژیکی (1 جلسه)
حرفه‌ات کاندی و آنادی

تعداد واحد: 2
نوع واحد: نظری
هنیز: آزمول حفاظت

سرفصل دوم:

تعریف، تاریخچه، چگونگی عملکرد حفاظت کاندی (از نظر الکترونیکی) از نظر مانعی جریان حفاظت کاندی، آناده‌ای کالوواریکی، سایر منابع انرژی (پانل‌های باطری، بامو کننده‌ها، ژنراتورها و ...) کاربرد اطلاعات بسته آمده از محیط (مقاومت خاک، pH و ...) بررسی‌ها و انداده‌گیری مقاومت، روش‌های اندازه‌گیری دیگر تعیین نقاط داغ، حفاظت نقاط داغ، معیار حفاظت، یکسانسی سازه به محیط، و انداده‌گیری گیره آن. کویسیست‌های حفاظت اندازه‌گیری موثر در طراحی حفاظت کاندی: گل جریان مورد نیاز تغییرات محیط، پوشک‌های محافظ، شیلد الکتریکی، بررسی‌های اقتصادی، جنس فلز، محیط کالوواریکی جریان های سرگردان، ردایی جریان‌های سرگردان، رفع اشکالات، کنترل تغییرات درجه حرارت، جنس آناده‌ای فلز، کاندی (Sacrificial Anodes)، کالوواریکی و مواد مصرف آنها، جنس آناده‌ای فلز، مواد در تاریخچه کاندی و آنادی.

رابطه آناده، اطلاعات طراحی و نشان دهنده آن فاکتورهای مورد بررسی بر هنگام اعمال حفاظت کاندی. بدیهی های خرابی بوسیله احیاء فیلم اکسیدی و ...، مقدمه ای بر چگونگی طراحی، مثال‌های مربوط به طراحی نصب و بررسی سیستم‌های حفاظت کاندی، سایر و آزمایشات مربوط به محیط کار، وسایل آزمایش‌های مربوط به جریان، خطوط بوسیله دار، خطوط بسیر، پوش، اندازه‌گیری مقاومت بوسیله، منحنی‌های پلارزاسیون، موقتیت الکترود، فرنگی، شرایط موثر، شرایط در طرح، انالیز و بررسی اطلاعات بسته آمده از محیط طراحی از نظر بسته (آناده‌ای، محل و مشخصات آنها، مقدار بستر و ...)، معیارهای حفاظت کاندی، تعویض متأثر کاندی خارجی، اجرای و تعیین روش اکتشافات ناشی از آن، حفاظت برای مقاومت خاص (خطوط لوله، نشان داده شده در فیلم، مخارزن و ...) کاربرد های...
Cavitation

Shioh های نصب انواع آندا - نظارت و نگهداری - عیوب سیستم‌های
Sacrificial Anodes , Impressed Current.

حفظات آنود - اصول و کاربرد .

1. Ashworth Cathodic Protection of Metals.
اکسیداسیون و خوردنی داغ

تعداد واحد: 2

پیش نیاز: ندارد

هم نیاز: خوردنی پیشرفت

مرحله دوی:

متدای ارزیابی اکسیداسیون - روش پیوسته ارزیابی - روش انتخاب پیوسته ارزیابی - بررسی قوانین سرعت اکسیداسیون - سرعت خلو اکسیداسیون - سرعت پارابلیک - اکسیداسیون - سرعت لگاریتمی اکسیداسیون - بررسی متدای مطالعه بر روی مورفولوژی لاکهای اکسیدیا.

امول ترمودینامیک در مطالعات اکسیداسیون در دماهای بالا - مکانیزم‌های اکسیداسیون لگاریتمی - فاکتورهای اکسیداسیون - لیگ نیمه هادی منفی یا 7-type - نیمه هادی مثبت یا 7-type - مکانیزم اکسیداسیون پارابو برسی تناوبی و اکثر در اکسیداسیون پارابولیک - مکانیزم اکسیداسیون خلو - مکانیزم اکسیداسیون لگاریتمی - فاکتورهای مؤثر بر سرعت اکسیداسیون - اکسیداسیون فلزات خالص.

سیستم‌های فلزی که تولید یک لایه در حین اکسیداسیون می‌گرند،

سیستم‌های فلزی که تولید چند لایه در حین اکسیداسیون می‌گرند.

سیستم‌های فلزی که تولید لایه های فرار در حین اکسیداسیون می‌گرند.

سیستم‌های فلزی که تولید لایه های ترد در حین اکسیداسیون می‌گرند.

اکسیداسیون ناپایان

اکسیداسیون آلیاژها

سیستم‌های فلزی که تولید ناخالص یا در اکسیداسیون ناخالص به خارجی

سیستم‌های فلزی که تولید ناخالص یا در اکسیداسیون ناخالص به خارجی

کربوراسیون (Metal dusting)

کربوراسیون در دما بالا - گریز به اکسیداسیون در دما بالا - متد پودر شدن فلزی در اثر روی گنگ کربوراسیون - نیترید اکسیداسیون در دما بالا -
1. Corrosion of alloys at high temp. by P. Hancock.
2. Oxidation of Metals by K. Hanffe.
معاونت کننده‌های خوردنی

تعداد واحد: 2

نوع واحد: نظری

پیشینه: خوردنی پیشرفته

سرفصل دروس:

تعریف معاونت کننده‌های انواع معاونت کننده‌های مختلف محیطی برعمل

با بازدارندگی (درجه حرارت، فلز، سرب، سال و...)، مکانیزم

با بازدارندگی در محیط‌های خشک و اسیدی و همچنین غیر فعال شدن در دفلومات

روشین شدن) با بازدارندگی در آمپیسه آنلاین و آمپیسه صنعتی (خشک)

کن های باز، بسته و بیکارگذاری

(Once - Through)

معاونت

کننده‌ها در منابع نفت و گاز، بازدارندگی درنگی‌باروچ و غیره، معاونت کننده‌کی

سروخت های سنگین (کنترل خوردنی داغ)، بازدارندگی از خوردنگی

اتخاذی با استفاده از معاونت کننده‌های فراورنده و مخازن تجهیزات

صنعتی در میدان توقف های کوتاه و بلند مدت (روش شیمیایی، کاری

خشک)، شستشوی شیمیایی در تجهیزات صنعتی (اسید، غیرآب، گاز

فلیکلری)، نحوه انتخاب مواد شوینده و بازدارنده چه انجام

شستشوی شیمیایی، نحوه نمونه برداری آزمایش، نحوه تشكیل لیه

حفاظتی پس از نمایش شوینده، رعایت دستورالعمل های ا الأم در موقع

شستشوی شیمیایی، بازدارندگی از خوردنی و سوختگذاری در باریکه

آن بر تهیه (نحوه کنترل خوردنی لوله‌های آهنی و لوله‌های سی مبدل ها)

بازدارندگی برای سیستم‌های گالوانیکی، بازدارندگی برای کنترل خوردنی
References:

3- Nathan, C. C. "Corrosion inhibitor" NACE 1982

6- Corrosion and Prevention in water, G. Butler and H.C.K. ISON.
ریک و بوشیهای تبدیلی

تعداد‌واحد: 2
 نوع واحد: نظری
 پیش‌نیاز: ندارد
 سرفصل دروس: اجزاء تشکیل‌دهنده رنگ و بوشیه (پیکمند ها، رحیم ها، پرکندگان - مواد افزودنی و حلال‌ها) و خواص آن‌ها - جوگنگ تشکیل فلمنگ رنگ
 (پلی مارپیژن - پلی کندانزاسیون - پلی اديسیون - نشره‌های جسدکی رنگ) طیب‌سازی رنگ و تقابل‌ها در رنگ، خلاصه‌ای از روش‌های آماده‌سازی سطح، روش حکایت های سطح، سنگ‌های اهیمت رعایت، اصول فنی در گاره بوشیهها (وکوزینتیشن)، مخلوط‌کردن قبل از استفاده از رنگ - نواصیل زمانی اعمال لیه‌های مختلف آستری، مبانی و رویه و شرایط بند. مواد تشکیل بوشیه (قیره‌ها، روتینی، فنل ها، آلکیدها، آکرلیک‌ها، ونیل، ایبوکسی‌ها، ورتان) مواد با دارادنی وحشی، مواد با بکتری و جلبک بوشیه‌ای مرکب یا اچ‌سی‌ف. مکانیزم حفاظت از خوردگی توسط رنگ - مناسب رنگ ها، رنگ‌های صنعتی و مراکز در درجه حرارت‌های بالا - بوشیه‌ای محافل برای تامین مراکز زیبایی و یا بوشیه‌های پودری - بوشیه‌ای سرامیکی - روش‌های لاستیکی و بلافاستیکی - روش‌های اعمال بوشیه‌ها، روش‌های آزمایش بوشیه‌ها.
آنودایزینگ، نانوریسای آنودایزینگ، مکانیزم تشکیل Porousfilm، Barrierfilm لایه آکسیدی، تغییرات ضخامت لایه آکسیدی با شرایط آنودایزینگ، خواص فیلم‌های آکسیدی و کاربرد منعطف آنها.

فسفاته: شیوع فسفاته، مکانیزم و چگونگی رشد لایه فسفاته، تغییرات پتاسیم در حیطه فسفاته. اثر عوامل مختلف بر پروآف فسفاته، فسفاته با اسیری و غوطه وری، فسفاته نمودن آهن، هیو، خواص پوششی فسفاته، کاربرد منعطف این پوششها در منابع اتمسفری، و کمک سیم، آشره‌ای فسفاته.

کروم‌های: شکر کروم‌ها کردن - عوامل موثر بر کروم‌های خلقت، اثر کروم‌های در جلوگیری از سولفوریداسیون فلزات در اتصال بررسی اقتصادی پوششها.

روایت اصول ایمنی و محیط زیستی در کاربرد پوششها.

1. PAYAN: Organic Coating.
2. GABE: Principles of Metal surface Treatment and protection.
4. Marjorie A. Brimi, James R. Luck: "Electrofinishing".
8. Hot Dip Galvanizing Conferance.
11. General Galvanizing Practice Published by the Galvanizers association.
آژماینگان اصول حفاظت

تعداد واحد: 1

پیش‌باز: خوردنی پیشرفت و آز

هم‌مان: حفاظت کاندید و آنگی معاونت کننده های خودکی

سرفصل دروس:

۱- آژماینگان مربوط به حفاظت کاندید درخاک (روش‌های تعمین مقاوست-

 پیش‌باز قطعه‌ی مقاومت پوشش - اتربیشت بند)

۲- آژماینگان مربوط به حفاظت کاندید در محیط‌های آبی (معیار حفاظت-

 اجرانده از آنند. فاجعه آند، توزیع پیش‌باز قطعه‌های حفاظت قربه)

(جلسه)

۳- حفاظت آنند (تعمین خارجی پوششی - اتربیش‌های محیط‌ی- بنگاه و جریان یپسیو) (جلسه)

۴- مطالعه تاثیر‌منامت کننده بر روی مایه‌ی الکترونیمیک (جلسه)

۵- بررسی تاثیر سرویس کننده های بانک‌های A.C

 آژماینگان پوششی آنند (تعمین کیفیتی پوشش - اتربیش‌گیری ضخامت-

 پوشش‌های اکثریت، آژماینگان چسبندگی پوششی یک‌خویابی - تخلخل-

 آژماینگان مکانیکی روی پوشش ها وتشکل داخلی -قابلیت انعطاف-

 پوشش‌های) (جلسه)

۶- آژماینگان نمک‌گذنی و ریزوهای پوششی (جلسه)

۷- آنودابوزی‌نگ آلومینیم و تشکیل فیلم‌های (فشرده و متخلخل) (جلسه)
روش‌های نوین مطالعه مواد

تعداد واحد: ۲
نوع واحد: نظری
پیش‌نیاز: ندارد

همچنین: آزمایشگاه روش‌های نوین مطالعه مواد

سرفصل دروس:

مقدمه‌ای بر جوهری روش‌های مطالعه سطوح در علم مواد روشنایی

بیماران سطوح (انهای الکترونی، فوتونیا، پنتاهای شتابدارد...)

پژوهش‌های اخذ الکترونی (مثلاً نورمنیک)، طرح الکترون اینتیک، پدیده‌های

ناشی از ریز‌رورالکترونی با سطوح (الکترون‌های برقی، الکترون‌های جذب

نوعی الکترون‌های ناشی از الکترون‌های اوسته، پدیده نیرغاسیون، پدیده کاتو

دولومنسی) میکروسکوب الکترونی (عوری)

SEM-سنج

میکروسکوب الکترونیی، AES

EPMA

روش‌های نوین مطالعه سطوح فوتونیا: نولزی فوتونیا (انهای ماسی، اچمه

۷۷، انشه - X، انشه مادون قارم)، استفاده از (انهای مری، میکروسکوب

نوری)، استفاده از اشعه (نیرفکتومترشامه - X، دوربین های

 مختلف اشعه X

ایکتروستاتیکی فلوئوراسیون اشعه - X، ایکتروفیکی

فتوالکترون اشعه ایکس (XPS) یا ESCA (U.P.S) U.V.

روش‌های نوین

مطالعه سطوح توسط پونت-پونت

جب اثر نیروی بر روی دارنده الکترونی شتابدار با سطوح جامد، ایکتروفیکی

GDS) سیم‌سی‌سی (amine) ایکتروستاتیکی بالاسمی (SINS

مطالعه با روش‌های نوین مطالعه گرایش مایکرواتومی کارایی‌ریتمی

RBS
آزمایش‌های روش‌های نوین مطالعه مواد

تعداد واحدها:

همزمان: روش‌های نوین مطالعه مواد

- X.R.D نمونه‌های منتخب (1 جلسه)
- تبه نمونه‌های TEM بار شهای مختلف (1 جلسه)
- مطالعه سطوح شکست با SEM (1 جلسه)
- مطالعه سطوح خوردکن و پاپوش‌ها SEM (1 جلسه)
- توبوگرافی سطح سایش (1 جلسه)
- آنالیز مولکولی پوست و پوست‌پوشانی EPMA و EDX (1 جلسه)
- بررسی مولفه‌سازی سطح پوست‌پوشانی (1 جلسه)
- تفریق اشته ای الکترونی جهت تشخیص شبکه و رشته‌های کرستالی (1 جلسه)
- اندازه‌گیری فيشیتی و فشار و خواص مکانیکی (1 جلسه)
- RBS
- آنالیز‌مود با TEM نمونه‌های منتخب با میکروسکوپ (1 جلسه)
- آنالیز‌مود با اسیکتروسکوپ و SIMS (1 جلسه)
- در هر گروه از دو گروهی کارکنانی از دو گروهی به روش های مختلف

حداکثر 8 آزمایش انجام می‌گردد.
آزمایش‌های بررسی علل تخریب مواد

تعدادواحد: 1
نوع واحد: عملی
بیشتری: حداقل 16 واحد ازواح‌های اجباری اختصاصی راکدرانده باشد.
هدف:
سرفصل دروس:
دانشجویان در این آزمایشگاه مستقیماً با مشکلات صنایع رودرو قرار گرفته، باید ترتیب که قطعات مختلفی راکد بنابراین برای کارا شده وقبلاً توسط کارشناسان علل تخریب آزمایشگی داده شده است. مورد بررسی قرار می‌گیرد. دانشجویان مسئولند که بعد از آزمایش عللت تخریب را حل با کمک موردی برای این گونه به‌طور رایج‌بودن به‌صورت یک‌گزارش تهیه و تنظیم به‌صورت دفاعی ارائه نمایند. بینن گزارش‌های هر قطعه مختلف گردآوری شده و به‌صورت تاریخی آن قطعه دراین آزمایشگاه ثبت‌می‌گردد.
خطا در اندازه‌گیری

تعداد واحد: 1

پیش‌پیاز: ندارد

مقدمه: آنالیز نتایج. ثبت نتایج آزمایش، دقیق در اندازه‌گیری، موارد غیرمعمول بودن اندازه‌گیری مقدار حقيقی، روند کردن مقادیر نتایج، تقریبی، خطاهای، مقدمه‌ای بر احتمال‌اتنیتی، تبادل همبسته، سطح محکم، عدم اطمینان: خطاهای سیستماتیک، توزیع متساوی، خطاهای ثابت نتایج در حد قابل قبول - روش‌های تجربی: تحقیقات نظری و تحقیقات تجربی، برنامه ریزی آزمایش، برنامه ریزی کلاسیک و پارامترهای مختلف موثر، برنامه ریزی تحقیق، مثال‌های برنامه‌ریزی - روش‌های اندازه‌گیری: خطاهای دستگاه‌های اندازه‌گیری، اندازه‌گیری مقدار انرژی حرارتی، اندازه‌گیری درجه حرارت، موت - اندازه‌گیری گیری های استانی: اندازه‌گیری تغییرات سکان، اندازه‌گیری تغییر و خطاهای اندازه‌گیری.
قننه های مکانیکی خوردگی

تعداد واحد: ۰

نوع واحد: نظری

پیش‌نیاز: خواص مکانیکی II (جبرانی)

- جمله دروس:

۱. ضروری بر شکست (Fracture)

۲. مبانی مکانیک شکست

- تئوری ورزگردان، برجسته و تحلیل از شدت تنش، تخمین ناحیه پلاستیکی در نوک ترک، انتقال در نوع شکست، نتوانسته صفحه‌ای نسبت به کرش مسکن

۳. آزمایشات توانایی شکست و آنالیز استیلی

۴. پلاستیکی با انگرال

(Stress Corrosion Cracking)

- مقدار پروش و نحوه پرخورد از دیدگاه مکانیک شکست، روش‌های آزمایش

۵. ملاحظات عمومی، آزمایشات سرعت رشد ترک

۶. تاثیر ترک کر یک‌تیمی یا وانسیل اعمال شده

(Corrosion Fatigue)

- مقدار، فرآیند عمومی، فرآیند خوردگی خستگی در پالسین ترک، مکانیزم‌های خستگی در محیط‌های خوردگی، مکانیزم‌های رشد ترک، جوانه زنی، خستگی در محیط‌های خوردگی، اثر محیط‌های خوردگی در

ΔK

۷. ۱۰۴
(Hydrogen Embrittlement)

References:
مقدمه

تعداد واحده: ۲
گراش: خورشیدی وحفاظت مواد
سرفصل دروس:
بدیه سطح

بافت سطح وسطح مهندسی وابسته آل، کیفیت وبرداشت سطوح، اندازه‌گیری زبری سطوح، توبوگرافی سطح، بدیهه جذب فیزیکی و شیمیایی، آزمایشات بورسی کیفیت سطوح، بدیهه های اتصالات سطح، معرفی روش‌های آماده سازی وتمیزکاری سطح نمونه

مکانیک تریال

انواع تماس، تماس بیکره بایک صفحه، تماس دوکره، محاسبه تماس واقعی وظاهری، تغییر شکل پلاستیک والاستیک سطوح

تریپولوژی

سایش، اصطکاک وروانکاری، مروری برطبیعت سایش، مکانیزم‌های سایش، سایش حرارتی، سایش چسبندگی، سایش ورقه‌ای مدن، سایش نوسانی، سایش فرایندهای سایش تریبوشیمیایی، فرآیندهای سایش، لنزی پرورشی وفرایندهای سایش درقطب‌های مهندسی، تشخیص منشأ سایش وانتخاب موادمقاوم به سایش،
شماره اصطکاک

مکانیزم اصطکاک، قوانین اصطکاک، اندازه‌گیری اصطکاک، سطوح اصطکاکی

سطح و سطح‌های مقاوم به سایش، طبقه‌بندی فرآیندهای متالورژی
سطح، مقدمه‌ای بر طبیعت ظهور شکل‌گیری سطحی، کاربرد پلاسمادوایر مشابه سطحی
پلاستیک رسانی، پوشش‌های مدار، رسوب نوار، شیشه‌ای، پلاستیکی
پوشش‌های الیافی و شیب الیافی و ریزش نواری بازارهای پرانتزی
درایه‌های سطحی، سطح سختی با استفاده از پرانتز‌های لیزر و الکترونی،

آلپازی نمودن سطح با استفاده از پرانتز‌های لیزر و الکترونی،

تعمیم مشخصه‌های لایه‌های سطحی

سطح سختی، سطح سختی، لایه‌های سطحی، تعمیم مشخصه‌های لایه‌های سطحی

اندازه‌گیری فشارهای لایه‌های سطحی، آزمایش‌های تعمیم استحکام
چسبندگی، روش‌های تعمیم استحکام لایه‌های سطحی

اندازه‌گیری بارزی در این سنگینی، استحکام لایه‌های سطحی

شکل‌های نمایش دهنده لایه‌های سطحی برتری‌افزایی، سطح‌های سختی و سطح‌های لیزر

مرور و مراجع:

1- م tolerant سطح و تریموالوژی، مهدی صالحی، فخراالدین اطخاری زاده،

2- Friction and Wear, B. Pugh Butterwerth, 1993.
درمودینامیک پیشرفته مواد

تعداد واحد: ۲
نوع واحد: نظری
پیش‌نیاز: ندارد

مراجع:
1. Introduction to Metallurgical thermodynamics D.R. Gaskell.
2. Thermodynamics of Solids R.A. Swalin.
سینتیک یک‌سفه مواد
تعداد واحد: 2
نوع واحد: نظری
پیش نیاز: ندارد

مروری بر قوانین سینتیک شیمیایی و انتقال بی‌بیدا گرد مکانیزم واکنش‌های همگن - انتقال ماده در حضور جریان سیال - سمینار انتقال ماده در سیال - واکنش در مرز فاز‌ها - انتقال در فصل مشترک - سینتیک واکنش‌های الکترودی - مهاجرت الکتریکی در محلول - الکوای سینتیکی برای واکنش‌های غیرهمگن - سینتیک فرابنده تبخیر - سینتیک جذب سطحی - حل‌کامپیوتری تحولات سینتیکی همگن و غیرهمگن.

مراجع:
5. The Mathematics of Diffusion by : Crank.

۶ براویدهای سینتیکی در مهندسی مواد و مالالورژی - خطیب الامام صدرزاده.
پدیده‌های انتقال پیشرفت‌های

تعداد واحد: ۲
نوع واحد: نظری
پیش‌نیاز: ندارد

سیالات نیوتنی و غیرنیوتنی، جریان آرام و جریان متلاطم، موازنه‌های انرژی در حرکت سیال، هدایت حرارتی، هدایت حرارت در حالت ثابت و عدم ثبات، چاه‌گاش‌های اجباری و طبیعی، مروری بر مکانیک سیالات، انتقال حرارت و انتقال جرم، حل مسادلات انتقال برای نرده‌های متالورزی و مواد، اصول الگو سازی، الگوهای ریاضی و فیزیکی، اعمال معیار تشابه در ساختن مدل‌های فیزیکی و ریاضی، روش تجزیه و تحلیل الگو برای بافت فرایند بهینه، مثال‌هایی از الگوهای ریاضی، الگوهای فیزیکی و طرح نیمه‌صنعتی.